
Styx++: Reliable Data Access and Availability Using a Hybrid 
Paxos and Chain Replication Protocol 

Ather Sharif 
asharif@cs.washington.edu 

Paul G. Allen School of Computer 
Science & Engineering | DUB Group, 

University of Washington 
Seattle, Washington, USA 

Emilia F. Gan∗ 
efgan@cs.washington.edu 

Paul G. Allen School of Computer 
Science & Engineering, University of 

Washington 
Seattle, Washington, USA 

Miranda Wei∗ 
weimf@cs.washington.edu 

Paul G. Allen School of Computer 
Science & Engineering, University of 

Washington 
Seattle, Washington, USA 

ABSTRACT 
HCI research often involves accessing and storing information in 
databases. However, in case of a database node failure, researchers 
could experience signifcant work delays, monetary costs, and data 
loss. How can researchers who have little or no knowledge of sys-
tems and infrastructures ensure that their data collection source 
is reliable and maximally available for accessing and storing data? 
To answer this question, we surveyed 11 HCI researchers. Using 
the fndings from the survey, we developed Styx++—an easy-to-
integrate open-source solution that bundles together existing tools 
and concepts, providing HCI researchers with a reliable distributed 
system for their database needs. Styx++ is a hybrid solution in-
volving both the Paxos and Chain Replication Protocol, providing 
strong consistency and high availability to minimize the risks of 
single-point failures in a traditional database system setup. Our eval-
uation of Styx++ against benchmark solutions shows promising 
results of an increase in reliability without substantial performance 
degradation. 

CCS CONCEPTS 
• Computer systems organization → Reliability; Availability; 
• General and reference → Design; • Information systems → 
Parallel and distributed DBMSs. 

KEYWORDS 
Paxos, Chain Replication Protocol, database, reliability, consistency, 
availability 

ACM Reference Format: 
Ather Sharif, Emilia F. Gan, and Miranda Wei. 2022. Styx++: Reliable Data 
Access and Availability Using a Hybrid Paxos and Chain Replication Proto-
col. In CHI Conference on Human Factors in Computing Systems Extended 
Abstracts (CHI ’22 Extended Abstracts), April 29-May 5, 2022, New Orleans, LA, 
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3491101. 
3519635 

∗These authors contributed equally to this work. 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA 
© 2022 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9156-6/22/04. 
https://doi.org/10.1145/3491101.3519635 

1 INTRODUCTION 
Databases are used widely for accessing and storing information in 
research projects. This is particularly true for felds such as Human-
Computer Interaction (HCI), in which recording the data from users 
accurately and reliably from studies is crucial [18]. Specifcally, 
databases are vital in performing data collection, analysis, and 
manipulation, which govern all aspects of society [9, 23]. 

However, databases, similar to any other computer system, can 
fail anywhere and at any time. In case of a database node failure, 
whether temporary or permanent, access to data terminates until 
the node is restored or replaced. Therefore, even with mitigation 
strategies, a database node failure comes at a considerable cost 
to the researchers. Additionally, for researchers collecting a large 
amount of data, such as through crowdsourcing, there might be 
signifcant work delays (e.g., setting up a new node, waiting to 
retrieve from a stored backup, etc.). These challenges are not only 
an inconvenience to researchers but could also incur monetary 
costs. Furthermore, most HCI researchers are unfamiliar with the 
knowledge and concepts (such as Distributed Systems) needed to 
tackle these challenges. 

To address these concerns, we developed Styx++—an open-
source easy-to-integrate solution that ensures data consistency and 
high availability. Using existing technologies, Styx++ gives HCI 
researchers the convenience and reliability of a well-implemented 
distributed system without requiring them to design and main-
tain the necessary infrastructure themselves. In a nutshell, Styx++ 
improves the reliability of the system, enabling another database 
node to replace a failed node automatically without any signifcant 
performance degradation. 

In developing Styx++, we surveyed 11 HCI researchers who 
utilize databases to access and store data in their research work. 
We found that most researchers are not interested in acquiring 
knowledge about systems-specifc concepts but would be willing to 
incorporate a tool with minimum learning overhead and easy inte-
gration. We used these fndings to develop Styx++, ensuring that it 
was easy to set up and manage. Styx++ is a hybrid between Paxos 
[13] and Chain Replication Protocol [28], with a high degree of sim-
ilarity to a Vertical Paxos [15] system. In particular, we make use 
of Paxos for the Controller node that manages the confguration 
of the chain and Chain Replication Protocol for the database nodes. 
This setup benefts us in ensuring strong consistency and support-
ing the fail-stop-restart model, which allows recovered nodes 
to be re-added to the chain. 

We evaluated Styx++ against a benchmark solution using K6 [4]— 
an open-source performance testing tool. We report that even 

https://doi.org/10.1145/3491101.3519635
https://doi.org/10.1145/3491101.3519635
https://doi.org/10.1145/3491101.3519635
mailto:weimf@cs.washington.edu
mailto:efgan@cs.washington.edu
mailto:asharif@cs.washington.edu


CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Ather Sharif, Emilia F. Gan, and Miranda Wei 

though Styx++ increased the total number of database nodes, the 
overall performance of the system did not signifcantly degrade. 
We discuss the fndings from the survey and performance tests in 
this paper. 

The main contributions of our work are as follows: 

(1) Styx++, an easy-to-integrate open-source solution that bun-
dles together existing tools and concepts, providing HCI 
researchers with a reliable distributed system for their data-
base needs. We present its design and architecture, func-
tionality, and operations. Additionally, we open-source our 
implementation at https://github.com/athersharif/styx. 

(2) We evaluated Styx++ using performance testing against a 
benchmark solution. Our fndings show that Styx++ im-
proved the reliability of the overall system without signif-
cantly degrading the performance of the system. Specifcally, 
on average, from over 1000 iterations, Styx++ only took 
about 56�� and 342�� more time compared to the bench-
mark server. 

2 RELATED WORK 
In this paper, we present Styx++, a tool that combines the concepts 
and implementations from Paxos [8, 13, 14], Chain Replication 
Protocol [12, 28], and Vertical Paxos [15, 27], which we discuss 
below. Several distributed database systems [7, 21, 22] exist that 
attempt to improve data availability [5, 10, 19, 24, 26]. However, to 
the best of our knowledge, we are the frst to explore a solution 
that provides HCI researchers with a fully implemented distributed 
system to minimize the risks of single-point-of-failure database 
systems. 

2.1 Paxos 
In a distributed system, a common practice is to store data in sev-
eral other computers (“replicas”). When and if the main computer 
(“controller”) becomes unresponsive, one of the replicas serves as 
the controller, ensuring that data is continually available without 
any disruption. Therefore, it is of pivotal importance that the stored 
data stays consistent amongst all the replicas. The Paxos protocol 
[13, 27] ensures consensus among replicas by having nodes within 
a Paxos group communicate to reach an agreement on what is 
committed to each replica. Styx++ is built using Consul [3], which 
implements Raft [20]—a consensus algorithm based on Paxos. 

2.2 Chain Replication Protocol 
The Chain Replication Protocol [28] is a replication protocol that 
guarantees strong consistency and consists of a chain containing 
the head, tail, and middle nodes. Write operations are delivered 
to the head of a chain of nodes, from where it propagates towards 
the tail with each node in the chain executing the update. On the 
other hand, read operations are served from the tail node, with 
the implicit assumption that every node that exists in the chain will 
be up-to-date. Styx++ constructs a chain of nodes, linked in a way 
that resembles the linked nodes in the Chain Replication protocol. 
In contrast to the standard Chain Replication Protocol that follows a 
fail-stop model, Styx++ supports a fail-stop-restart model, 
supporting nodes to rejoin the chain when they recover from failure. 

2.3 Vertical Paxos 
When a node fails in a distributed system, part of the recovery 
process involves setting up a replacement node that contains the 
knowledge of the state of the system. This state transfer process can 
be slow, leading to disruptions in the availability of the system. Ver-
tical Paxos [15] was developed to address this issue, enabling state 
transfer and continued operation of the system to occur concur-
rently. In a Vertical Paxos implementation, an external controller—a 
replicated state machine, manages the global system state [15]. 
Styx++ contains a Controller node, which is synonymous with 
the auxiliary confguration controller in Vertical Paxos in both 
concept and functionality. 

3 PRELIMINARY SURVEY 
To inform our design choices for Styx++, we conducted a prelimi-
nary survey with 11 HCI researchers. The survey was advertised 
using a word-of-mouth strategy and shared on relevant social me-
dia channels. First, we asked respondents to report their area of 
research and their expertise with distributed systems and applica-
tions. Then, we asked about specifc backup practices of databases 
they had used in the past. We also asked about their intended actions 
and potential implications in a hypothetical database server failure 
scenario. We concluded by eliciting their knowledge of current so-
lutions that would provide system availability and data consistency 
in case of server failures and their interest in using such systems. 
Participants were entered into a drawing for a $20 Amazon gift 
card as compensation for their time in taking the survey. 

We used an open coding procedure to qualitatively analyze re-
sponses to two free-response questions: recovery steps taken in 
a hypothetical database server failure scenario (Q1) and inconve-
niences faced in such a situation (Q2). One co-author iteratively 
developed a codebook with thematic codes, identifying 8 codes 
for Q1 and 4 for Q2; codes were not mutually exclusive. A second 
member of the research team independently coded the full data set. 
Inter-coder reliability (IRR), measured with Cohen’s � , was 0.70 (for 
Q1) and 1.00 (for Q2), considered “substantial” and “almost perfect,” 
respectively [16]. 

3.1 Results 
Notably, none of our respondents identifed as being Profcient or an 
Expert in distributed systems: six out of 11 respondents (54.5%) re-
ported being a Novice, three (27.3%) reported being a Beginner, and 
the remaining reported being Competent. However, all respondents 
had worked with reading or writing information in a database, and 
fve respondents (45.5%) reported being Competent in developing 
applications involving databases. 

Six respondents (54.5%) managed backups for their databases 
using automatically generated backups. Three (27.3%) manually 
exported, and the remaining two respondents (18.2%) did not have 
backups. 10 respondents (90.9%) reported the importance of ac-
quiring distributed systems knowledge for their research as “not 
important.” 

Eight respondents did not know of any out-of-the-box solutions 
providing system availability and data consistency without knowl-
edge of distributed systems. Nine (81.8%) respondents expressed 
it would be unimportant to be concerned about database server 

https://github.com/athersharif/styx


Styx++ CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA 

Figure 1: Styx++ employs a three-tier system: Tier 1 contains the Controller and its replicas, which act as the confguration 
managers for Styx++, Tier 2 contains the Consul server and its replicas, which are responsible for monitoring and health 
checking the database nodes, and Tier 3 contains the database nodes that consist of a Consul agent that the Consul server 
communicates with and the database server that executes a client request. The frst node in the chain is the head whereas the 
last node in the chain is considered as the tail. The star represents the leader of the Paxos group. 

crashes or failures; the remaining two participants were neutral. 
Respondents expressed that they would be interested in such a 
system only if the efort of usage were minimal. 

Finally, in our survey, we presented respondents with a hypo-
thetical study scenario of a crowdsourced study that was constantly 
recording data in a database; however, the server hosting their 
database crashed before the most recent backup was made. We 
asked respondents what steps they would take to recover the server 
and the data. Four respondents said they would check the logs to 
determine what happened, whereas three said they would restart 
the database. Four respondents said they would restore from an 
older backup, accepting the data loss. Three respondents said they 
would try to recover the data through workfows besides the data-
base, such as contacting participants directly to request the data or 
writing additional scripts. 

For nine respondents, the main concern was the time lost. Ad-
ditionally, four respondents (36.4%) mentioned the implications of 
potentially missing data, three (27.3%) mentioned monetary loss of 
the project, and two expressed (18.2%) negative emotions such as 
frustration. To our surprise, one respondent said there would be no 
implications at all. 

4 STYX++ 

4.1 Overview 
Styx++ is an easy-to-integrate solution that bundles together exist-
ing tools and concepts to provide HCI researchers with a reliable 
distributed system for their database needs. Styx++ implements 
a hybrid of Paxos [13] and the Chain Replication Protocol [28] to 
provide strong consistency and improved availability for database 
nodes by reducing the chance of a single point of failure. Styx++ 
takes input from users in a simple question and answer format and 
outputs a fully deployable system confguration. 

4.2 Architecture 
Styx++ consists of two main components: Controller and Node 
Chain. Figure 1 illustrates the architecture of the Styx++ system. 
The Controller in Styx++ is based on the implementation of 
an auxiliary confguration controller in Vertical Paxos [15] and is 
responsible for: (1) managing the Node Chain; (2) handling requests 
from the client; and (3) keeping a log of all the requests and their 
statuses. 

The Node Chain closely follows the Chain Replication Proto-
col [28] and is managed by the Controller. The chain is created 
when the system initializes and then adjusted whenever a node 
fails or recovers. The addition of support for node recovery allows 
Styx++ to follow a fail-stop-restart model, which extends the 
functionality of the original Chain Replication Protocol that only 
supports a fail-stop model [28]. 

4.3 Implementation 
We implemented Styx++ replicating a network of Virtual Machines 
(“VM”s) using Docker [6] containers. This method does not accu-
rately replicate latencies that would exist in a real-world network. 
To address this, when conducting the performance tests, we intro-
duced sleep functions on each node with a random value between 
20 and 200 ms. 

4.3.1 Controller. In Styx++, the Controller is synonymous with 
the auxiliary confguration controller in Vertical Paxos [15]. To 
eradicate a single point of failure in Styx++, we employ Consul 
[3]—a service mesh solution that provides service discovery, con-
fguration, and segmentation functionality. Additionally, Consul 
provides an easy-to-use interface (Figure 2). However, the user in-
terface uses systems-specifc terminologies such as “ACL,” “Nodes,” 
and “Intentions.” Future work could develop a browser extension 
to translate these terms that are more broadly understandable. 



CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Ather Sharif, Emilia F. Gan, and Miranda Wei 

Figure 2: Screenshots showing the Consul user interface. The left screenshot (Services) shows the health checks for both the 
server and services for the database and Consul. The right screenshot (Nodes) shows the currently existing nodes and their 
status. The leader is indicated by the red star. 

Under the hood, in order to provide consistency, Consul imple-
ments Raft [20], which is a consensus algorithm based on Paxos 
[13]. Given that Raft requires (�/2) + 1 servers to form a quorum, 
our system requires at least 3 nodes that are dedicated to being 
Consul servers. 

In our current implementation, a Controller runs a lightweight 
server implemented in Node.js [1] and hosts a Consul control ser-
vice that uses the above-mentioned servers to achieve consistency 
in its key/value store and communicate with the Consul agents on 
the database nodes. 

4.3.2 Node Chain. The Node Chain is a chain of nodes imple-
mented based on the Chain Replication Protocol [28]. The chain 
consists of a head node, a tail node, and � middle nodes that are 
unidirectionally linked to each other. As in the traditional Chain 
Replication Protocol [28], the head receives the client write re-
quests and passes it to the next in the chain until the tail node is 
reached, which then responds to the client. For the read requests 
from the client, the request is sent to the tail that responds directly 
to the client. 

Each node runs a database service, a lightweight server that 
processes the incoming read and write operations and a Consul 
[3] agent that serves as a health checker (a service used to mon-
itor whether a given node or service is alive and responding) for 
both the database service and the node server. We used Postgres 
[25] as the database service and Node.js [1] as the node server 
that communicates with the Postgres database using the extensive 
pg client library for Node.js [2]. To ensure a robust implementa-
tion, we support transactional database queries by default. Future 
work can extend the benefts of Styx++ to databases other than 
Postgres. 

4.4 Database Operations 
Styx++ classifes database operations into two types: (1) reads 
(for example, SELECT query); and (2) writes (for example, INSERT 
query). Styx++ executes both these types using database transac-
tions to ensure database consistency and isolation. Additionally, 
Styx++ also supports operations of the same type in batches, which 
are also executed as a database transaction. 



Styx++ CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA 

Figure 3: (left) Benchmarking results showing time for read iterations is relatively unafected as number of nodes increase. 
(right) Benchmarking results showing time for write iterations takes progressively longer as nodes are added. An “iteration” is 
a single round-trip operation. 

In the Styx++ universe, when the Controller receives a request 
(single or in batch), it begins the execution process by determining if 
a chain update operation is in progress (see subsection “Node Failure 
and Recovery”). All incoming requests are queued until the chain 
has fnished updating. After completion, the Controller fetches 
the current chain from the Consul’s key/value store and generates 
a hash for the request. At this point, the next steps are determined 
by the type of operation and are explained in the subsections below. 

4.4.1 Read. For the read operation, Styx++ continues the process 
described above by identifying the tail node. Once identifed, the 
request is then entered into the tail’s queue as well as its own 
key/value store and the Controller’s key/value store. Then, the 
request is sent to the tail node for processing and the Controller 
awaits its response. 

When the tail receives a read request, it checks its queue to 
see if there are any write operations that entered the queue be-
fore the current request. Checking the queue is crucial for consis-
tency, especially if the node has recovered from a failure. If such 
requests exist, then the tail proceeds to process them frst, ensur-
ing that the reads are consistent with the state of the database. Once 
these requests are processed, the tail executes the current query 
and collects the response. The tail then updates its own and the 
Controller’s key/value store, marking the request as completed 
and appending the request with the result of the query. Finally, the 
tail sends the response to the Controller, which then forwards 
the tail’s response to the client. 

Styx++ maintains two separate key/value stores for the 
Controller and the nodes. While Controller keeps track of the 
overall requests, the node keeps track of the incoming requests 
that it received and may have processed. Such an implementation 
allows Styx++ to provide consistency when a node fails or recovers. 
Furthermore, it is also helpful for troubleshooting purposes and for 
providing insights about the overall system on a node level. 

4.4.2 Write. The write operation follows a similar process as the 
read operation with the exception of a few key diferences. First, 
as in the traditional Chain Replication Protocol [28], the write 

requests are handled by the head, as opposed to the tail in the 
read operation. 

Second, the Controller does not wait for the response from the 
head node, as the head node forwards the request to the next node 
in the chain, and the chain processes requests in a unidirectional 
manner. Instead, the Controller periodically checks its key/value 
store to see if the request has been marked completed. If such is 
the case, it returns the result of the request to the client. In the case 
of a node failure during request execution, a timeout threshold of 
60� is exercised—after which, a timeout error is returned to the 
client. 

Finally, during a write operation, the request is passed along 
in the chain until the tail node. Each node, upon completion of 
the request, updates its own key/value store (similar to the read 
operation), fnds the next node in the chain, enters the request into 
the next node’s queue, and forwards the request to the next node 
in the chain. However, in the case that the node is the tail node, 
upon completion of the request, only the Controller’s and the tail 
node’s key/value store is updated, as the tail node is the last in the 
chain. 

4.5 Node Failure and Recovery 
Styx++ utilizes the Consul health check watcher to get notifed 
when a node itself or the database service has either failed or recov-
ered. When such a notifcation is received, Styx++ starts the chain 
adjustment process. During this process, Styx++ queues all the 
incoming requests to prevent any undesirable inconsistency that 
might occur as a side-efect. Once the chain is readjusted, the queue-
ing of incoming requests is turned of and the execution resumes 
as usual. 

4.5.1 Failure. We identify three node failures cases: (1) failure of 
head; (2) failure of tail; and (3) failure of any other nodes other 
than head or tail. When head fails, the rest of the chain moves 
one position to its left. The tail node stays at the tail position. 
When the tail node fails, the node at the position before tail 
assumes the responsibility of tail. Finally, if any other node in the 
chain fails, all nodes after the position of the failed node move one 



CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Ather Sharif, Emilia F. Gan, and Miranda Wei 

Benchmark 1-node 
Styx++ 

2-node 
Styx++ 

3-node 
Styx++ 

4-node 
Styx++ 

5-node 
Styx++ 

read 1.02 1.09 1.07 1.07 1.08 1.07 

write 1.02 1.12 1.17 1.31 1.49 1.72 

Table 1: Average iteration duration for read and write operations in seconds over 1000 iterations for Benchmark server and 
Styx++ servers with a varying number of database nodes (1 - 5). 

position to the left. Future work can conduct an in-depth analysis 
of other possible failure scenarios. 

4.5.2 Recovery. A traditional Chain Replication Protocol [28] sup-
ports the fail-stop model. Styx++ extends this functionality by 
supporting the fail-stop-restart model allowing for the nodes 
to recover and be re-added to the chain at the tail position. We 
did not explore adding an entirely new node into the chain. 

4.5.3 State Updates. Before the chain adjustment, the nodes need 
to have a consistent state. Given a node failure case, where the node 
before the failed node is � and the node-set containing the node(s) 
after the failed node is � . For each node � in node-set � , Styx++ 
achieves its consistent state by (1) taking the diference between 
the write requests in the key/value store of the node � and node 
� ; (2) collecting the requests that exist in node � but are missing in 
node � ; and (3) entering those requests in the queue of node � . 

5 PERFORMANCE TESTING 
To test the performance of Styx++, we created a benchmark server 
and 5 Styx++ servers, each consisting of a unique number of nodes 
between 1 and 5. To replicate a traditional server, the benchmark 
server also used the pg client library [2] to access the database but 
made direct calls to the database. All servers were programmed in 
Node.js [1]. We used K6 [4], a performance testing tool, to compare 
the performance of Styx++ servers with the benchmark server for 
both the read and write operations using 10 Virtual Users (VUs) 
and 1000 iterations. Specifcally, we used the iteration duration 
metric for comparison, which accounts for the total iteration du-
ration that comprises the request time, duration, and sleeps. Table 
1 shows the iteration duration comparison for both the read and 
write operations, while Figure 3 shows benchmarking results for 
reads and writes, respectively. 

Our results show that over 1000 iterations, Styx++ servers took 
an average of 1.08� (��=0.01) to perform read operations, about 
56�� more compared to the benchmark server. For write oper-
ations, compared to the benchmark server, Styx++ servers took 
an average of 1.36� (��=0.25), about 342�� more time, with the 
average iteration duration proportionally increasing with the in-
crease in the number of nodes. These results indicate that while 
Styx++ increases the overall iteration duration, the increment is a 
reasonable trade-of for reliability and availability. 

6 DISCUSSION 
In this paper, we developed Styx++, a solution that assists re-
searchers in improving the reliability and availability of their data-
base systems without them having to spend signifcant time and ef-
fort in understanding the fner details of distributed systems. Styx++ 
leverages the theoretical concepts of Paxos and Chain Replication 
Protocol and the open-source tools such as Consul and Raft to 
provide strong consistency and high availability of database nodes. 
We surveyed 11 HCI researchers to inform our design choices for 
Styx++. We evaluated Styx++ with performance testing using K6, 
overall fnding that Styx++ ofers enhanced database reliability 
without signifcantly decreasing performance. 

The trade-ofs between reliability and performance among other 
factors (such as availability and cost) have been widely discussed 
[11, 17]. Increasing reliability can result in performance degrada-
tion, whereas performance upgrades can decrease reliability. Our 
performance testing results show that Styx++ servers (varying from 
one to fve nodes) only took about 56�� more than the benchmark 
server for the read operations. However, for write operations, the 
diference on an average was 342�� . As expected, the performance 
decreased as the number of nodes increased. Therefore, we rec-
ommend a Styx++ server with 3 nodes to be a good general ft 
considering the trade-of between reliability and performance. 

6.1 Limitations and Future Work 
Styx++’s performance can be improved by investigating other 
factors and implementation details. For example, Node.js is single-
threaded; therefore, another run-time environment may result in 
better performance. To further evaluate the performance and re-
liability of Styx++, we aim to conduct more user studies with 
researchers using a mixed-methods approach. Specifcally, we plan 
to employ a user-centered design protocol, utilizing the longitudi-
nal feedback from researchers through task-based experiments and 
contextual interviews to refne Styx++. Additionally, future studies 
are warranted to evaluate the learning curve and ease-of-use of the 
tool. 

ACKNOWLEDGMENTS 
We would like to thank the reviewers for their helpful comments 
and suggestions. We also thank Arvind Krishnamurthy and Lequn 
Chen for their invaluable input and feedback. Lastly, we would like 
to extend our warmest thanks to Zoey, Gandalf, Tatlim, Mura, and 
Eno for their feline support and expert purrusal of this work. 

REFERENCES 
[1] 2009. Node.js. https://nodejs.org/ 

https://nodejs.org/
https://����=0.25
https://����=0.01


Styx++ 

[2] 2010. Postgres. https://node-postgres.com/ 
[3] 2014. Consul by HashiCorp. http://consul.io/ 
[4] 2016. Performance testing for developers, like unit-testing, for performance. 

https://k6.io/ 
[5] Sérgio Almeida, João Leitão, and Luís Rodrigues. 2013. ChainReaction: A Causal+ 

Consistent Datastore Based on Chain Replication. In Proceedings of the 8th ACM 
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys ’13). 
ACM, New York, NY, USA, 85–98. https://doi.org/10.1145/2465351.2465361 

[6] Charles Anderson. 2015. Docker [software engineering]. Ieee Software 32, 3 
(2015), 102–c3. 

[7] Stefano Ceri, Barbara Pernici, and Gio Wiederhold. 1987. Distributed database 
design methodologies. Proc. IEEE 75, 5 (1987), 533–546. 

[8] Tushar D Chandra, Robert Griesemer, and Joshua Redstone. 2007. Paxos made 
live: an engineering perspective. In Proceedings of the twenty-sixth annual ACM 
symposium on Principles of distributed computing. 398–407. 

[9] C.L. Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, 
challenges, techniques and technologies: A survey on Big Data. Information 
Sciences 275 (2014), 314–347. https://doi.org/10.1016/j.ins.2014.01.015 

[10] James C Corbett, Jefrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, 
Jefrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, 
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database. 
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 8. 

[11] Batya Friedman, Nancy Levenson, Ben Shneiderman, Lucy Suchman, and Terry 
Winograd. 1994. Beyond accuracy, reliability, and efciency: criteria for a good 
computer system. In Conference Companion on Human Factors in Computing 
Systems. 195–198. 

[12] Scott Lystig Fritchie. 2010. Chain replication in theory and in practice. In Pro-
ceedings of the 9th ACM SIGPLAN workshop on Erlang. 33–44. 

[13] Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed 
Computing Column) 32, 4 (Whole Number 121, December 2001) (December 2001), 
51–58. https://www.microsoft.com/en-us/research/publication/paxos-made-
simple/ 

[14] Leslie Lamport. 2005. Generalized consensus and Paxos. (2005). 
[15] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. 2009. Vertical Paxos and 

Primary-backup Replication. In Proceedings of the 28th ACM Symposium on Prin-
ciples of Distributed Computing (Calgary, AB, Canada) (PODC ’09). ACM, New 
York, NY, USA, 312–313. https://doi.org/10.1145/1582716.1582783 

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA 

[16] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33, 1 (1977), 16. 

[17] John Lange, Alexandros Labrinidis, and Panos K Chrysanthis. 2014. Towards 
automated personalized data storage. In 2014 IEEE 30th International Conference 
on Data Engineering Workshops. IEEE, 278–283. 

[18] Fei Li and HV Jagadish. 2012. Usability, Databases, and HCI. IEEE Data Eng. Bull. 
35, 3 (2012), 37–45. 

[19] Bruce G. Lindsay. 1987. A retrospective of R*: a distributed database management 
system. Proc. IEEE 75, 5 (1987), 668–673. 

[20] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consen-
sus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual 
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association, 
Berkeley, CA, USA, 305–320. http://dl.acm.org/citation.cfm?id=2643634.2643666 

[21] M Tamer Ozsu and Patrick Valduriez. 1991. Distributed database systems: Where 
are we now? Computer 24, 8 (1991), 68–78. 

[22] M Tamer Özsu and Patrick Valduriez. 1999. Principles of distributed database 
systems. Vol. 2. Springer. 

[23] Aisha Siddiqa, Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Mohsen Marjani, 
Shahabuddin Shamshirband, Abdullah Gani, and Fariza Hanum Nasaruddin. 2016. 
A survey of big data management : Taxonomy and state-of-the-art. 

[24] Michael Stonebraker, Paul M Aoki, Witold Litwin, Avi Pfefer, Adam Sah, Jef 
Sidell, Carl Staelin, and Andrew Yu. 1996. Mariposa: a wide-area distributed 
database system. The VLDB journal 5, 1 (1996), 48–63. 

[25] Michael Stonebraker and Lawrence A Rowe. 1986. The design of Postgres. Vol. 15. 
ACM. 

[26] Jef Terrace and Michael J. Freedman. 2009. Object Storage on CRAQ: High-
throughput Chain Replication for Read-mostly Workloads. In Proceedings of the 
2009 Conference on USENIX Annual Technical Conference (San Diego, California) 
(USENIX’09). USENIX Association, Berkeley, CA, USA, 11–11. http://dl.acm.org/ 
citation.cfm?id=1855807.1855818 

[27] Robbert Van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately 
Complex. ACM Comput. Surv. 47, 3, Article 42 (Feb. 2015), 36 pages. https: 
//doi.org/10.1145/2673577 

[28] Robbert van Renesse and Fred B. Schneider. 2004. Chain Replication for Sup-
porting High Throughput and Availability. In Proceedings of the 6th Confer-
ence on Symposium on Operating Systems Design & Implementation - Volume 6 
(San Francisco, CA) (OSDI’04). USENIX Association, Berkeley, CA, USA, 7–7. 
http://dl.acm.org/citation.cfm?id=1251254.1251261 

https://node-postgres.com/
http://consul.io/
https://k6.io/
https://doi.org/10.1145/2465351.2465361
https://doi.org/10.1016/j.ins.2014.01.015
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/1582716.1582783
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=1855807.1855818
http://dl.acm.org/citation.cfm?id=1855807.1855818
https://doi.org/10.1145/2673577
https://doi.org/10.1145/2673577
http://dl.acm.org/citation.cfm?id=1251254.1251261

	Abstract
	1 Introduction
	2 Related Work
	2.1 Paxos
	2.2 Chain Replication Protocol
	2.3 Vertical Paxos

	3 Preliminary Survey
	3.1 Results

	4 Styx++
	4.1 Overview
	4.2 Architecture
	4.3 Implementation
	4.4 Database Operations
	4.5 Node Failure and Recovery

	5 Performance Testing
	6 Discussion
	6.1 Limitations and Future Work

	Acknowledgments
	References



